Low EMI, Spread Modulating, Clock Generator

Features:

- ICS91730 is a Spread Spectrum Clock targeted for Mobile PC and LCD panel applications that generates an EMI-optimized clock signal (EMI peak reduction of 7-14 dB on 3rd-19th harmonics) through use of Spread Spectrum techniques.
- ICS91730 focuses on the lower input frequency range of 14.318 to 80.00 MHz with a spread modulation of 20 kHz to 40 kHz .

Specifications:

- Supply Voltages: $\mathrm{V} D \mathrm{DD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
- Frequency range: $14.318 \mathrm{MHz} \leq$ Fin $\geq 80 \mathrm{MHz}$
- Cyc to Cyc jitter: <150ps
- Output duty cycle $45-55 \%$
- Guarantees $+85^{\circ} \mathrm{C}$ operational condition.
- 8-pin SOIC
- Reference input

8 Pin SOIC

* Internal Pull-Up Resistor

Functionality

FSIN_1	MHz	Spread \% default
0	14.318 MHz in $-->27 \mathrm{MHz}$ out	-0.8 down spread
1	27.00 MHz in $-->27.00 \mathrm{MHz}$ out	-1.25 down spread

Block Diagram

Pin Descriptions

PIN \#	PIN NAME	PIN TYPE	DESCRIPTION
1	CLKIN	PWR	Input for reference clock.
2	VDD	IN	Power supply, nominal 3.3V
3	GND	OUT	Ground pin.
4	CLKOUT	I/O	Modulated clock output.
5	REF_OUT/FS_IN1*	I/O	Un-modulated 3.3V reference clock output.
	Frequency select latch input. Refer to the functionality table.		
6	SDATA	PWR	Data pin for SMBus circuitry, 5V tolerant.
7	SCLK	PWR	Clock pin of SMBus circuitry, 5V tolerant.
8	PD\#*	Asynchronous active low input pin, with 120Kohm internal pull-up resistor, used to power down the device. The internal clocks are disabled and the VCO and the crystal are stopped.	

[^0]ICS91730

Table 1: Frequency Configuration Table
(See I2C Byte 0)

	FS4	FS3	FS2	FS1	FSO	Sprd Type	Sprd \%
14in/27out	0	0	0	0	0	DOWN SPREAD (-)	0.60
	0	0	0	0	1		0.80
	0	0	0	1	0		1.00
	0	0	0	1	1		1.25
	0	0	1	0	0		1.50
	0	0	1	0	1		2.00
	0	0	1	1	0	CENTER SPD (+/-)	0.50
	0	0	1	1	1		1.00
14in/14out 27in/27out	0	1	0	0	0	DOWN SPREAD (-)	0.60
	0	1	0	0	1		1.00
	0	1	0	1	0		0.80
	0	1	0	1	1	CTR SPD	0.3
	0	1	1	0	0	DOWN SPREAD $(-)$	
							1.50
	0	1	1	0	1		1.75
	0	1	1	1	0		2.00
	0	1	1	1	1		2.50
	1	0	0	0	0		3.00
	1	0	0	0	1		1.25
	1	0	0	1	0	CENTER SPD (+/-)	0.40
	1	0	0	1	1		0.50
	1	0	1	0	0		0.70
	1	0	1	0	1		1.00
	1	0	1	1	0		1.20
	1	0	1	1	1		1.50
48in/48out 66in/66out	1	1	0	0	0	DOWN SPREAD (-)	0.60
	1	1	0	0	1		0.80
	1	1	0	1	0		1.00
	1	1	0	1	1		1.25
	1	1	1	0	0		1.50
	1	1	1	0	1		2.00
	1	1	1	1	0	$\underset{(+/-)}{\text { CENTER SPD }}$	0.50
	1	1	1	1	1		1.00

Above is the hard coded 5 bit (32 entry) ROM table.
FS3:0 are ONLY accessible through I2C software programming bits (byte0 bits5:7). FS4 can also be decoded from FS_IN1 latched input hardware pins.
FS_IN1 \rightarrow FS4. Upon power-up the default is to use hardware selection of FS_IN1 latched value.
$F S 3=0, F S 2=0, F S 1=0, F S 0=1$ upon power-up (refer to the functionality table on page 1).
To access non-default spread entries in the ROM, byte0 programming should be used. In order to change the power up default of FS_IN1 = $1(-1.25 \%$ down spread) to any other spread $\%$ entry, first change byteObit 0 to software selection by switching this bit to a ' 1 ' and then program the desired percentage by changing byte0 bits 7:3.

ICS91730

General $I^{2} \mathrm{C}$ serial interface information

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D4 ${ }_{(H)}$
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
(see Note 2)
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D4 ${ }_{(H)}$
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D5 ${ }_{(H)}$
- ICS clock will acknowledge
- ICS clock will send the data byte count $=X$
- ICS clock sends Byte N+X-1
- ICS clock sends Byte 0 through byte X (if $X_{(H)}$ was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Read Operation			
Controller (Host)		ICS (Slave/Receiver)	
T	starT bit		
Slave Address D4(H)			
WR	WRite		
			ACK
Beginning Byte $=\mathrm{N}$			
			ACK
RT	Repeat starT		
Slave Address D5 ${ }_{(H)}$			
RD	ReaD		
			ACK
			ta Byte Count = X
ACK			
		$\stackrel{\text { ¢ }}{\substack{\text { m } \\ \times}}$	Beginning Byte N
ACK			
			0
0			\bigcirc
0			\bigcirc
0			
			Byte N + X-1
N	Not acknowledge		
P	stoP bit		

$\begin{gathered} \text { Byte } \\ 0 \end{gathered}$	Affected Pin			Type	Bit Control		PWD
	Pin \#	Name	Control Function		0	1	
Bit 7	-	FSO	Spread/FS0	RW	Srpead Pecentage See Table1 These are I2C bits only		1
Bit 6	-	FS1	Spread/FS1	RW			0
Bit 5		FS2	Spread/FS2	RW			0
Bit 4		FS3	Spread/FS3	RW			0
Bit 3		FS4	FS4	RW			0
Bit 2		PD\# Tri_Sate	PD\# Tri_Sate	RW	Hi-Z	LOW	1
Bit 1		Spread Enable	Spread Enable	RW	OFF	ON	1
Bit 0		HW/SW Control	Spread Spectrum Control FS 3:4 Hard/Software Select	RW	HW	SW	0

Byte1	Affected Pin			Type	Bit Control		PWD
	Pin \#	Name	Control Function		0	1	
Bit 7		REF_OUT	REF_OUT_Enable	RW	Disable	Enable	1
Bit 6	-	REF_OUT	Slew Rate REF-OUT	RW	Nominal	Fast	1
Bit 5		FS-IN_1	FS-IN_1 Readback	R	-	-	X
Bit 4		(Reserved)	(Reserved)	R	-	-	0
Bit 3		CLK_OUT	Slew Rate CLK-OUT	RW	Nominal	Fast	1
Bit 2		CLK_OUT	CLK_OUT_Enable	RW	Disable	Enable	1
Bit 1		(Reserved)	(Reserved)	R	-	-	1
Bit 0		(Reserved)	(Reserved)	R	-	-	1

$\begin{gathered} \text { Byte } \\ 2 \end{gathered}$	Affected Pin			Type	Bit Control		PWD
	Pin \#	Name	Control Function		0	1	
Bit 7	x	-	(Reserved)	-	-	-	1
Bit 6	X	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 5	x	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 4	x	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 3	x	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 2	x	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 1	x	(Reserved)	(Reserved)	RW	Disable	Enable	1
Bit 0	x	(Reserved)	(Reserved)	RW	Disable	Enable	1

$\begin{gathered} \text { Byte } \\ 3 \end{gathered}$	Affected Pin			Type	Bit Control		PWD
	Pin \#	Name	Control Function		0	1	
Bit 7	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 6	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 5	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 4	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 3	x	(Reserved)	(Reserved)	RW	-	-	1
Bit 2	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 1	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 0	X	(Reserved)	(Reserved)	RW	-	-	1

$\begin{gathered} \text { Byte } \\ 4 \end{gathered}$	Affected Pin			Type	Bit Control		PWD
	Pin \#	Name	Control Function		0	1	
Bit 7	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 6	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 5	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 4	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 3	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 2	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 1	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 0	X	(Reserved)	(Reserved)	RW	-	-	1

$\begin{gathered} \text { Byte } \\ 5 \end{gathered}$	Affected Pin			Type	Bit Control		PWD
	Pin \#	Name	Control Function		0	1	
Bit 7	X	(Reserved)	(Reserved)	-	-	-	1
Bit 6	X	(Reserved)	(Reserved)	-	-	-	1
Bit 5	X	(Reserved)	(Reserved)	-	-	-	1
Bit 4	X	(Reserved)	(Reserved)	-	-	-	1
Bit 3	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 2	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 1	X	(Reserved)	(Reserved)	RW	-	-	1
Bit 0	X	(Reserved)	(Reserved)	RW	-	-	1

Byte $\mathbf{6}$	Affected Pin				Bit Control		
	Pin \#	Name	Control Function	Type	$\mathbf{0}$	$\mathbf{1}$	PWD
	X	Revision ID Bit 3	(Reserved)	R	-	-	1
Bit 6	X	Revision ID Bit 2	(Reserved)	R	-	-	1
Bit 5	X	Revision ID Bit 1	(Reserved)	R	-	-	1
Bit 4	X	Revision ID Bit 0	(Reserved)	R	-	-	1
Bit 3	X	Vendor ID Bit 3	(Reserved)	R	-	-	1
Bit 2	X	Vendor ID Bit 2	(Reserved)	R	-	-	1
Bit 1	X	Vendor ID Bit 1	(Reserved)	R	-	-	1
Bit 0	X	Vendor ID Bit 0	(Reserved)	R	-	-	1

ICS91730

Absolute Maximum Ratings

Supply Voltage . 3.7 V
Voltage on any pin with respect to GND . .
-0.5 to +3.7 V
Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation 0.5 W

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

$\mathrm{T}_{\mathrm{A}}=0-85^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V_{IH}		2		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		$\mathrm{V}_{\text {SS }}-0.3$		0.8	V
Input High Current	I_{IH}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	-5		5	mA
Input Low Current	$\mathrm{I}_{\text {LL1 }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$; Inputs with no pull-up resistors	-5			mA
Powerdown Current	$\mathrm{I}_{\text {DD3.3PD }}$			1	5	mA
Input Frequency Pin Inductance	Fi	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$		14.318		MHz
	Lpin				7	nH
Input Capacitance ${ }^{1}$	$\mathrm{C}_{\text {IN }}$	Logic Inputs			5	pF
	$\mathrm{C}_{\text {OUT }}$	Output pin capacitance			6	pF
	$\mathrm{Cl}_{\text {INX }}$	X1 \& X2 pins	27	36	45	pF
Transition time ${ }^{1}$	$\mathrm{T}_{\text {trans }}$	To 1st crossing of target frequency			3	ms
Settling time ${ }^{1}$	Ts	From 1st crossing to 1\% target frequency			3	ms
Clk Stabilization ${ }^{1}$	$\mathrm{T}_{\text {STAB }}$	From $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ to 1\% target frequency			3	ms
Delay ${ }^{1}$	$\mathrm{t}_{\text {PzH }}, \mathrm{t}_{\text {PZL }}$	Output enable delay (all outputs)	1		10	ns

${ }^{1}$ Guaranteed by design, not 100% tested in production.

Electrical Characteristics - CLKOUT

$\mathrm{T}_{\mathrm{A}}=0-85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=10-20 \mathrm{pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 3}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4			V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL} 3}$	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.4	
Rise Time	tr 3	$\mathrm{~V}_{\mathrm{OL}}=0.41 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=0.86 \mathrm{~V}$	0.5	0.6	1	ns
Fall Time	tf 3	$\mathrm{~V}_{\mathrm{OH}}=0.86 \mathrm{~V} \mathrm{~V}_{\mathrm{OL}}=0.41 \mathrm{~V}$	0.5	0.6	1	ns
Duty Cycle	$\mathrm{d}_{\mathrm{t} 3}$	measurement from differential wavefrom - 0.35 V to +035 V	45	50	55	$\%$
Jitter, Cycle to cycle	$\mathrm{t}_{\mathrm{jcyc}-\text { cyc }}{ }^{1}$	$\mathrm{~V}_{\mathrm{T}}=50 \%$		50	150	ps

Guaranteed by design, not 100% tested in production.

Electrical Characteristics - REF

$\mathrm{T}_{\mathrm{A}}=0-85^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=10-20 \mathrm{pF}$ (unless otherwise specified)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Impedance	$\mathrm{R}_{\text {DSP } 1}{ }^{1}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}{ }^{*}(0.5)$	20	48	60	Ω
Output High Voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4			V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL}}{ }^{1}$	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.4	V
Output High Current	IOH^{1}	$\mathrm{V}_{\text {ОН@ }} \mathrm{MIN}=1.0 \mathrm{~V}, \mathrm{~V}_{\text {OH@MAX }}=3.135 \mathrm{~V}$	-29		-23	mA
Output Low Current	IOL^{1}	$\mathrm{V}_{\mathrm{OL} \text { @MIN }}=1.95 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL} \text { @ }}$ MAX $=0.4 \mathrm{~V}$	29		27	mA
Rise Time	$\mathrm{tr}_{\mathrm{r} 1}{ }^{1}$	$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$	1	1.2	2	ns
Fall Time	$\mathrm{t}_{\mathrm{f} 1}{ }^{1}$	$\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$	1	1.2	2	ns
Duty Cycle	$\mathrm{d}_{\mathrm{t} 1}{ }^{1}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45	51	55	\%
Jitter	$\mathrm{t}_{\text {jcyc-cyc }}{ }^{1}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V}$		105	300	ps

${ }^{1}$ Guaranteed by design, not 100% tested in production.

ICS91730

Ordering Information

ICS91730yMLF-T

Example:

Revision History

Rev.	Issue Date	Description	Page \#
B	$06 / 25 / 04$	Add Lead Free package description to Ordering Information	10
C	$06 / 29 / 04$	Add Revision History table to datasheet.	11
		1. Revise ABS Max Ratings. 2. Updated REF Electrical Characteristics Table.	
D	$05 / 23 / 05$	3. Updated LF Ordering Information from "Lead Free" to "RoHS Compliant".	$8-10$

[^0]: * Internal Pull-Up Resistor ** Internal Pull-Down Resistor

